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Abstract. The infrared properties of the high-temperature limit of Landau-gauge Yang–Mills theory are
investigated. In a first step the high-temperature limit of the Dyson–Schwinger equations is taken. The
resulting equations are identical to the Dyson–Schwinger equations of the dimensionally reduced theory,
a three-dimensional Yang–Mills theory coupled to an effective adjoint Higgs field. These equations are
solved analytically in the infrared and ultraviolet, and numerically for all Euclidean momenta. We find
infrared enhancement for the Faddeev–Popov ghosts, infrared suppression for transverse gluons and a
mass for the Higgs. These results imply long-range interactions and over-screening in the chromomagnetic
sector of high-temperature Yang–Mills theory while in the chromoelectric sector only screening is observed.

1 Introduction

The infrared structure of quantum chromodynamics
(QCD) governs the dynamics of hadrons as well as the
thermodynamic properties of hot and dense hadronic mat-
ter and is thus of great current interest. Although our un-
derstanding is far from being satisfactory much progress
has been made recently using different genuinely non-per-
turbative techniques. Such methods include lattice Monte-
Carlo calculations, Dyson–Schwinger equations (DSEs),
renormalization group methods, stochastic quantization,
the use of topological arguments, and others.

For QCD, being a gauge theory, it is expected that
the description of strong interaction phenomena such as
confinement contains gauge dependent aspects. Therefore
investigations in a particular gauge will very likely not lead
to a full understanding of non-perturbative dynamics but
may nevertheless provide important information. It turns
out that for the studies to be performed here the Landau
gauge is advantageous [1] due to its non-renormalization
of the ghost–gluon vertex [2].

One of the most intriguing phenomena measured with
extremely high precision is confinement, i.e. the absence
of colored objects from the physical spectrum. This is a
genuinely non-perturbative effect related to the infrared
behavior of QCD. Monte-Carlo lattice calculations pro-
vide clear evidence that the confining properties of QCD
change above a critical temperature, see e.g. [3]. This has
implications for relativistic heavy-ion collisions and the
early stages of the universe. Since it is likely that con-
finement is generated in the Yang–Mills sector of QCD,
the behavior of a pure Yang–Mills theory may already
reveal the qualitative mechanisms of the deconfinement
transition. It is therefore especially interesting to study

the properties of Yang–Mills theory above the critical tem-
perature as well as its temperature dependence.

Here we will present the results of such a study.
For technical reasons, this is currently done in the
infinite-temperature limit, but investigations with finite-
temperature corrections are ongoing. (The results of an
earlier exploratory study are presented in [4].)

Complementary to this approach also a study at tem-
peratures below the phase transition has been performed.
The corresponding results will be presented elsewhere [5].
Both these and the investigations presented here utilize
DSEs [6], the equations of motion of the Yang–Mills the-
ory. They therefore extend successful calculations in the
vacuum of the Yang–Mills theory [7] and full QCD [8] to
finite temperature.

This paper is organized as follows. To make the pre-
sentation self-contained we briefly review some aspects of
confinement in Yang–Mills theories in Sect. 2. In Sect. 3
we derive the DSEs to be solved and discuss the trun-
cations made. In Sect. 4 we present analytic solutions for
different momentum regimes while Sect. 5 exhibits the full
numerical solutions as well as their comparison with lat-
tice calculations. In Sect. 6 we discuss the thermodynamic
potential and screening masses. Interpretations of the re-
sults with respect to different aspects are given in Sect. 7.
In Sect. 8 we present our conclusions and also give an out-
look concerning ongoing activities. Technical details are
deferred to five appendices.

2 Confinement

A major focus of the present work is the fate of confine-
ment at temperatures far above the phase transition. It
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is therefore necessary to be able to extract information
about confinement. To establish criteria for confinement
we study the infrared behavior of the pertinent 2-point
functions.1 Since calculations in Euclidean space-time are
significantly simpler than in Minkowski space-time we use
in the following three criteria which are applicable in the
Euclidean case.2

The first criterion is an empirical one. It allows one
to infer that a particle is confined irrespective of the dy-
namical origin of confinement. It is based on the fact
that no Källén–Lehmann representation of a particle ex-
ists if the corresponding propagator does not have a posi-
tive semi-definite spectral norm, i.e. for this “particle” the
Osterwalder–Schrader axiom of reflection positivity [11] is
violated. It is then not part of the physical spectrum and
thus confined, c.f. [12]. To test this criterion we will in-
vestigate whether the Schwinger function ∆(t) is positive
semi-definite; see Sect. 6.2 below. In case the correspond-
ing propagator D vanishes at zero momentum,

lim
q2→0

D(q2) = 0, (1)

the respective Schwinger function cannot be positive, and
thus positivity is violated. It is important to note that,
since positivity violation is only a sufficient condition
for confinement, particles may still be confined by other
means.

The two remaining criteria describe confinement mech-
anisms. The Kugo–Ojima scenario [13] puts forward the
idea that all colored objects form BRST-quartets and thus
do not belong to the physical state space. This scenario is
based on a derivation requiring three preconditions which
have (yet) to be proven. The first precondition is an unbro-
ken BRST charge also for large and thus non-perturbative
field configurations. The second is the failure of the clus-
ter decomposition theorem. This requires that no mass
gap exists in the complete state space (although a mass
gap has to exist in the physical subspace). The third re-
quirement is an unbroken global color charge. Assuming
the validity of these conjectures, the Kugo–Ojima confine-
ment criterion is fulfilled in the Landau gauge if [14]

lim
q2→0

q2DG(q2) → ∞, (2)

1 In a SU(N) Yang–Mills theory 1-point functions are ex-
pected to vanish even at non-vanishing temperatures due to
the antisymmetry of the structure constants. No sign of a sym-
metric color structure of vertex functions, although in principle
possible for SU(N ≥ 3) gauge theories has yet been found [9].
In the following we therefore assume it not to be present. The
dimensionally reduced theory, as the high-temperature limit of
a four-dimensional Yang–Mills theory then also only contains
color antisymmetric vertex functions.

2 Employing Euclidean space-time also facilitates compar-
isons with lattice results. The transformation back to Min-
kowski space-time is already non-trivial in the vacuum [10]
and will be addressed in Sect. 6.3. For the case of equilibrium
calculations this point is of minor concern since the statistical
system is anyway described in Euclidean space.

where DG is the propagator of the Faddeev–Popov ghosts.
This scenario necessarily also implies the condition (1) for
the gluon propagator.

In the Zwanziger–Gribov scenario [15], entropy argu-
ments are employed to show the dominance of field con-
figurations close or on the Gribov horizon in field configu-
ration space. It has two consequences that can be investi-
gated. This scenario predicts a behavior of the gluon prop-
agator as in condition (1) and of the ghost propagator as in
condition (2). In addition, it is argued that the gauge fix-
ing term dominates the action. Therefore the ghost-loop-
only truncation, introduced below, becomes exact in the
infrared. Our results, as the ones obtained in the vacuum
[7,8], support this picture in so far as (1) and (2) are sat-
isfied and that in the infrared limit the behavior of the
gluon propagator is driven by the ghost loop.

Also intuitively it is clear that a strongly divergent
ghost propagator at zero momentum can mediate confine-
ment. Such an infrared divergence relates to long-ranged
spatial correlations. These are stronger than the ones in-
duced by a Coulomb force since the divergence in momen-
tum space is stronger than that of a massless particle.

3 Dyson–Schwinger equations

3.1 Tensor structure of the gluon equation

The DSEs [6,16–18] form an infinite tower of coupled non-
linear integral equations for the Green’s function of a given
theory. Thus it is necessary to truncate this system. The
motivation for the specific truncation scheme used here
will be given below. In the following we aim at a closed
set of equations for the pertinent 2-point functions. In
Landau gauge and for the vacuum in 3 + 1 dimensions
these are the ghost propagator

DG(q2) =
−G(q2)

q2 (3)

and the gluon propagator

Dµν(q) = Pµν(q)
Z(q2)

q2 , (4)

where Pµν(q) = δµν − qµqν/q2 is the transverse projector.
Equations (3) and (4) define the dimensionless dressing
functions G(q2) and Z(q2), respectively.

We will allow, but not require, ghost-loop dominance
in the infrared. In the ultraviolet the one-loop terms are
dominant as they are the leading terms in perturbation
theory. Thus we follow here [7] and neglect one-particle-
irreducible two-loop diagrams. The derivation of these
equations at zero temperature can be found e.g. in [17,
18]. The tadpole is not left as a free part of the equa-
tions, but its non-perturbative behavior is fixed by the
requirement that no divergences beyond those allowed by
the Slavnov–Taylor identities should occur in the gluon
equation. This reflects the behavior of the tadpole in per-
turbative calculations. This truncation scheme is depicted
in Fig. 1.
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Fig. 1. Graphical representation of the truncated system of
vacuum DSEs. Wiggly lines represent gluons and dotted lines
ghosts. Lines with a full dot are full propagators. Small dots
denote bare vertices and open circles represent full vertices

Finite temperature is introduced in the DSEs using
the Matsubara formalism [19]. This entails two indepen-
dent tensor structures for the gluon, one of them being
three-dimensional (3D) transverse and the other one 3D
longitudinal [20]

Dµν(q) = PTµν(q)
Z(q2

0 ,q2)
q2 + PLµν(q)

H(q2
0 ,q2)
q2 . (5)

Therefore there are two independent dressing functions, Z
and H.3 The variable q0 denotes the Matsubara frequency
and q the spatial momentum. Note that Lorentz invari-
ance, although not manifestly visible any more, is not lost
in this formalism [21]. The ghost propagator, as a scalar,
does not acquire a second independent dressing function.
It depends nevertheless also on q0 and q separately. There-
fore three independent functions of two variables each have
to be determined.

To obtain from the matrix equation for the gluon prop-
agator two scalar equations for the dressing functions, it
is contracted with two tensors [4]:

P ξ
Lµν = ξPLµν + (1 − ξ)

(
1 +

q2
0

q2

)
δµ0δ0ν ,

P ζ
Tµν = ζPTµν + (1 − ζ)

(
δµν −

(
1 +

q2
0

q2

)
δµ0δ0ν

)
, (6)

where ξ and ζ are two parameters. They are connected
to the truncation scheme and will also be discussed in
Sect. 3.3. PL and PT are defined as [20]

PTµν = δµν − qµqν

q2 + δµ0
q0qν

q2 + δ0ν
qµq0

q2

− δµ0δ0ν

(
1 +

q2
0

q2

)
, (7)

3 These are identically to ZT and ZL in [4], respectively. The
notation has been changed to better visualize their correspon-
dence to the objects in the 3D theory. In [5] they are called
ZM and Z0 to emphasize their physical meaning.
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Fig. 2. Graphical representation of the truncated system of
DSEs at non-vanishing temperature. Wiggly lines represent
3D transverse gluons, dashed lines 3D longitudinal gluons and
dotted lines ghosts. Lines with a full dot are full propagators.
Small dots denote bare vertices and open circles represent the
full vertices which have to be constructed in the truncation
discussed in the text

PLµν = Pµν − PTµν . (8)

Graphically these equations are represented in Fig. 2. The
solutions for small temperatures below the phase transi-
tion are discussed in [5].

3.2 Dimensional reduction

In the next step we take the infinite-temperature limit of
the truncated DSEs. To this end we note that, neglecting
any contributions from Matsubara frequencies different
from zero, this yields an effective three-dimensional Yang–
Mills theory with an additional adjoint Higgs. This Higgs
field is the remnant of the A0 field in the four-dimensional
theory. Thus the number of degrees of freedom is con-
served.

The structure of the projectors (6) simplifies in the
case of vanishing Matsubara frequency, i.e. q0 = 0. P ξ

Lµν

becomes δµ0δ0ν , independent of ξ. It thus projects onto the
time-time component of the propagator. Therefore, the
3D longitudinal part relates to the Higgs and this sector
corresponds to the chromoelectric sector of the original
theory. The non-vanishing elements of P ζ

Tµν become

P ζ
ij = δij − ζ

pipj

p2 . (9)

It projects onto the three-dimensional subspace. Therefore
the gluons in the 3D reduced theory correspond to the
chromomagnetic sector of the four-dimensional theory.

This dimensional reduction amounts to integrating out
the hard modes in tree-level approximation. Contributions
from higher Matsubara frequencies can potentially gener-
ate additional terms in the Lagrangian of the dimension-
ally reduced theory [22]. Lattice calculations and matching
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in the perturbative regime show that this is indeed the case
[22,23]. Especially, a tree-level mass for the Higgs is gen-
erated. This also modifies the DSEs: the additional terms
occurring stem from the neglected Matsubara frequencies
and once included they can be derived from first principles
as follows. The Lagrangian which governs the 3D reduced
theory is [17,22]

L =
1
4
F a

µνF a
µν + c̄a∂µDab

µ cb +
1
2
(Dab

µ φbDac
µ φc

+ m2
hφaφa) +

h

4
φaφaφbφb, (10)

with the field strength tensor F a
µν and the covariant

derivative Dab
µ defined as

F a
µν = ∂µAa

ν − ∂νAa
µ − g3f

abcAb
µAc

ν , (11)

Dab
µ = δab∂µ + g3f

abcAc
µ . (12)

Aa
µ is the gauge field, ca the ghost, c̄a the anti-ghost4, φa

the Higgs field, g3 the dimensionful gauge coupling, mh

is the Higgs mass, h is the Higgs self-coupling and fabc

are the structure constants of the gauge group. A three-
Higgs coupling is not present due to the antisymmetry
of the structure constants and the remaining global color
symmetry at tree-level.

If appropriate, multiples of g2
3 are chosen as the fun-

damental scale and all results in the employed trunca-
tion scheme will be independent of Nc for gauge groups
SU(Nc) in the following sense: In the chosen truncation
scheme only the combination CAg2

3 appears as reference
to the gauge group, CA = Nc being the second Casimir
invariant of the adjoint representation of the group. Hence
a change in Nc can always be absorbed by a change in g2

3
as long as the ratio g2

3/mh is kept fixed.
The Higgs self-coupling h can be uniquely determined

in the 3D reduced theory. Since the Higgs field is a com-
ponent of the four-dimensional gluon field, no linear di-
vergence of the Higgs self-energy can occur due to the
Slavnov–Taylor identities of the four-dimensional theory.
Introducing temperature, no novel divergencies arise [19].
Implementation of this requirement fixes the Higgs self-
coupling h in leading-order perturbation theory (see Ap-
pendix C).

All other constants occurring in the Lagrangian (10)
are effective constants which arise by integrating out the
heavy modes. For any large, although finite, temperature
T all remaining dimensionful quantities will scale as the
temperature T . After rescaling, the precise dependence of
g3 on T is irrelevant for the solution of the DSEs and the
issue will be postponed to Sect. 6.1.

The 3D reduced theory is not only superrenormaliz-
able, but also finite, and all renormalization constants will
be set to one in the following.

The DSEs for the Yang–Mills sector are already
known, see e.g. [17]. They are rederived in Appendix A
for completeness. Since no tree-level coupling between the

4 Note that the hermiticity assignment for the ghost is not
the usual one but is still correct for Landau gauge [1,17].

Higgs and the ghost is present, the ghost equation will not
be modified as compared to pure Yang–Mills theory. The
ghost and the gluon DSEs are given by

(D−1
G )ab(p) = −δabp2

+
∫

ddq

(2π)d
Γ tl;cc̄A;dae

µ (−q, p, q − p)Def
µν(p − q)

× Ddg
G (q)Γ cc̄A;bgf

ν (−p, q, p − q) , (13)

(D−1
H )ab(p) = δab(p2 + m2

h) + THG;ab + THH;ab

+
∫

ddq

(2π)d
Γ tl;Aφ2;eac

ν (−p − q, p, q)Dcg
νµ(p + q)

× Dfc(q)Γ gbf
µ (p + q, −p, −q) , (14)

(D−1)ab
µν(p) = δab(δµνp2 − pµpν) + TGG;ab

µν + TGH;ab
µν

−
∫

ddq

(2π)d
Γ tl;cc̄A;dca

µ (−p − q, q, p)Dcf
G (q)

× Dde
G (p + q)Γ cc̄A;feb

ν (−q, p + q, −p)

+
1
2

∫
ddq

(2π)d
Γ tl;A3;acd

µσχ (p, q − p, −q)Dcf
σω(q)

× Dde
χλ(p − q)ΓA3;bfe

νωλ (−p, q, p − q)

+
1
2

∫
ddq

(2π)d
Γ tl;Aφ2;acd

µ (p, q − p, −q)Dde(q)

× Dcf (p − q)ΓAφ2;bef
ν (−p, q, p − q) , (15)

where T i are the tadpole contributions. The first label
gives the equation where the tadpole contributes (G for
gluon and H for Higgs) and the second the type of tad-
pole appearing. The index tl denotes the tree-level quanti-
ties which are explicitly given in (67)–(72) in Appendix A.
This set of 3D truncated equations is diagrammatically
displayed in Fig. 3. Note that all momenta in these equa-
tions are three-momenta.

It is important to note that the ghost–gluon vertex
function Γ cc̄A;abc

ν (p, q, −p − q) becomes bare for vanishing
ghost momentum p [2],

lim
p→0

Γ cc̄A;abc
ν (p, q, −p − q) = ig3f

abcqν . (16)

This identity especially ensures that we can choose a bare
ghost–gluon vertex without altering qualitative results for
the infrared behavior of the propagators. Indeed, at least
in four dimensions, the qualitative nature of the infrared
solution is independent of the detailed structure of the
ghost–gluon vertex to a large extent [24]. Numerical con-
sistency checks also find that the ghost–gluon vertex does
not depart significantly from its tree-level form [25]. Thus
we will use a bare ghost–gluon vertex in the following. To
complete the description of our truncation we still have
to choose the 3-gluon vertex and the Higgs-gluon vertex.
As these choices are motivated by more technical consid-
erations we will defer all details concerning these vertex
functions to the appropriate sections describing the nu-
merical solutions.

To obtain equations for the dressing functions, the
color indices are contracted assuming the tree-level color
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Fig. 3. Graphical representation of the truncated system of
DSEs in the infinite-temperature limit. Wiggly lines represent
gluons, dashed lines Higgs and dotted lines ghosts. Lines with
a full dot are full propagators. Small dots denote bare vertices
and open circles represent full vertices

structure for the vertex functions. This assumption is sup-
ported by lattice calculations [9]. The gluon DSE is trans-
formed to a scalar equation by contracting it with the ten-
sor (9). Dividing the DSEs by all trivial factors appearing
on the LHS these equations read

G−1(p2) = 1

+
g2
3CA

4π2

∫
dqdθAT(p, q)G(q2)Z((p − q)2) , (17)

H−1(p2) = 1

+
m2

h

p2 + THG + THH

+
g2
3CA

4π2

∫
dqdθ

(
N1(p, q)H(q2)Z((p + q)2)

+ N2(p, q)H((p + q)2)Z(q2)
)

, (18)

Z−1(p2) = 1

+ TGH + TGG

+
g2
3CA

4π2

∫
dqdθ

(
R(p, q)G(q2)G((p + q)2)

+ ML(p, q)H(q2)H((p + q)2)

+ MT(p, q)Z(q2)Z((p + q)2)
)

, (19)

where θ is the angle between p and q. For the truncation
used in the present investigation, the integral kernels AT,
N1, N2, R, ML and MT are given in Appendix B.5

5 For convenience, there have been slight redefinitions and
changes of notation as compared to [4].

3.3 Constraints on the solutions

Due to the truncation of the DSEs, the Slavnov–Taylor
identities are not fulfilled. This violation manifests itself
in the appearance of spurious divergences in the gluon
self-energy. These can be removed by adjusting either the
tadpole terms or by projecting the gluon equation with
the tensor (9) and choosing ζ = d = 3 in the equation
for the 3D transverse gluon propagator [26]. The viola-
tion of gauge invariance does not manifest itself in the
Higgs equation (14) of the 3D reduced theory. Thus this
equation is independent of ξ. Furthermore, the Higgs self-
energy in 3D is finite since the gluon propagator has only
a logarithmic divergence in four dimensions. Therefore the
divergencies of the two tadpole terms in (14) have to can-
cel each other exactly. Nonetheless, as the Higgs has a fi-
nite mass, the tadpoles involving a Higgs propagator have
a finite contribution which correspond to a finite mass
renormalization. This has to be taken into account and
will be discussed in detail in Sect. 4.

Varying ζ while selecting the tadpoles to cancel any
spurious divergencies in the Yang–Mills and the Higgs sec-
tor of the gluon equation (15) allows one to explore dif-
ferent degrees of gauge violations. Especially the physical
case of a transverse projected equation is of interest. If
the results do not depend qualitatively and only weakly
quantitatively on the value of ζ it is justified to assume
that the effect of the violation of gauge symmetry is small
and under control, c.f. [27].

There is another aspect of gauge invariance to be re-
spected in non-perturbative calculations. As the Lorentz
condition does not completely fix the gauge field, config-
urations are over-counted. This is known as the Gribov
problem [28]. The region of gauge space which contains
no copies and includes the origin is called the fundamental
modular region; see e.g. [29]. There is, however, at present
no local condition known which defines this region. It is
contained in the first Gribov region including the origin
and configurations for which the Faddeev–Popov deter-
minant does not change sign. The restriction to the first
Gribov region can be formulated at the level of dressing
functions as boundary conditions to the solutions of the
DSEs as

G(q2) ≥ 0, Z(q2) ≥ 0, H(q2) ≥ 0. (20)

The condition on H does not follow from the Gribov con-
dition in three dimensions but only due to the fact that
it is a component of the gauge field in four dimensions.
The condition (20) does not completely solve the prob-
lem since the first Gribov horizon encloses a larger part
of gauge space than the fundamental modular region, and
therefore contains gauge copies [30]. Nevertheless, for the
purpose of calculating propagators it is likely that this
condition is sufficient for eliminating Gribov copies [15].
Note that, in lattice calculations, the Gribov ambiguity
poses a more severe problem and makes it especially hard
to extract the ghost propagator [31].
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4 Infrared and ultraviolet behavior
of the propagators

4.1 Ultraviolet behavior

The 3D reduced theory is also asymptotically free [32].
Thus the propagators and vertex functions reduce to their
tree-level values for sufficiently large momenta. As the 3D
reduced theory is finite, corrections are power-like. (In the
case of the Higgs this is only true for k � mh.) Since g2

3
has the dimension of a mass and does not enter in the
loop integrals of (17), (18) and (19), already by dimen-
sional analysis, one infers that the one-loop contributions
are proportional to g2

3/q. Thus all loop integrals are sub-
leading in the ultraviolet compared to the tree-level con-
tribution. An explicit verification of this behavior is given
in Appendix C. Leaving aside the possibility of a finite
renormalization, one has

lim
q2→∞

G(q2) = lim
q2→∞

Z(q2) = lim
q2→∞

H(q2) = 1. (21)

For large enough q2 the dressing functions are thus ap-
proximately given by

1 +
cig

2
3√

q2
, (22)

where the constants ci turn out to be positive for all dress-
ing functions. Hence all dressing functions approach the
tree-level behavior from above.

4.2 Infrared behavior

In this section we will study the infrared behavior of
the dressing functions employing the following general
ansätze:

G(q) = Agq
−2g, (23)

Z(q) = Azq
−2t, (24)

H(q) = Ahq−2l. (25)

For a pure Yang–Mills theory (without a Higgs) and a
transversal projected gluon DSE this analysis has already
been performed for three space-time dimensions in [33].

The assumption g = t = 0 and l = −1, motivated by
the naive idea of a free gas of quarks and gluons in the
high-temperature limit, immediately leads to a contradic-
tion due to divergencies in the ghost and the gluon DSEs.
Thus no such “Coulomb phase” can be realized when tak-
ing into account condition (16) on the ghost–gluon vertex.
Also g = 0 and t = l = −1, corresponding to a purely per-
turbative quark-gluon plasma with screening masses in the
magnetic and the electric sector, immediately leads to a
contradiction. This is also understood from the fact that,
in order to obtain such a behavior, the tadpoles would
have to dominate. However, for ζ = 3, the tadpole in the
gluon equation does not contribute. Besides, it is hard to
see how the vacuum corresponding to such propagators

avoids the violation of Elitzur’s theorem [34] (for further
details see [35]). Hence the tadpole cannot be the infrared
leading term in the gluon equation and one must have
t ≤ −1. Convergence of the integrals in the DSEs even re-
quires t < −1; see Appendix E. This is in agreement with
the reasoning [15] for infrared dominance of the gauge fix-
ing part of the Lagrangian (10). The inequality

t < −1 (26)

implies condition (1) and thus gluon confinement. On the
one hand, this is no surprise as one expects confinement
also in the three-dimensional Yang–Mills theory. On the
other hand, it means that real-world chromomagnetic glu-
ons are confined even at infinitely high temperatures! Note
that the solution found in [33] also obeys the inequality
(26).

In Appendix E the infrared limit of the DSEs is de-
rived:

yg

Ag
= y−(d−4)/2−g−tIGT (g, t)AgAz, (27)

yt

Az
= 1 + y−(d−4)/2−2gIGG(g, ζ)A2

g, (28)

yl

Ah
= 1 +

m2
h + δm2

y
, (29)

where y = q2 and d denote the dimension. A subtraction
in (27) has been performed and only the finite part is re-
tained. The expressions for IGT and IGG, originating from
the ghost self-energy and the ghost loop, can be found in
Appendix E. In the Higgs equation, a finite renormaliza-
tion of the mass has been allowed for. The mass renormal-
ization is given in equation (89) and is discussed in [35].
Equation (29) possesses only one solution, namely l = −1
and

Ah =
1

m2
h + δm2 . (30)

This indicates firstly a qualitative change in the high-
temperature limit (as in four dimensions at T = 0 one
has t = l) and secondly the decoupling of the Higgs in
the infrared. These observations agree with corresponding
findings on the lattice [23].

The infrared ghost equation (27) implies the relation
(see also [33])

g = −1
2

(
t +

4 − d

2

)
= d→3 −1

2

(
t +

1
2

)
. (31)

The difference to the relation in four dimensions,

g = d→4 −t/2, (32)

implies an additional power in momentum which exactly
compensates the dimension of the effective coupling con-
stant in three dimensions. A corresponding compensation
is expected at high temperatures in four dimensions to
cancel the straightforward temperature factor in front of
the Matsubara sum.
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Due to the inequality (26) g is positive. Thus any solu-
tion automatically satisfies (2) and both the Kugo–Ojima
and the Zwanziger–Gribov conditions are fulfilled.

Using (31) in (28) one obtains

−
(

22g−d
√

π
(

d

2
+ g

)
(2 + d(ζ − 2) − 4g(ζ − 1) − ζ)

× csc
(

π(d − 4g)
2

)
sin(πg)Γ

(
d

2
+ g

))
/(

(d − 1)2gΓ

(
1 + d − 2g

2

)
Γ (2g)

)
= 1. (33)

This equation has at least one solution for d ≥ 1 and two
solutions for d ≥ 2; see Fig. 4. Equation (33) simplifies for
d = 3 to

1 =
32g(1 − g)(1 − cot2(gπ))

(1 + 2g)(3 + 2g)(2 + 2g(ζ − 1) − ζ)
. (34)

One of the two solutions in d = 3 is independent of the
projection of the gluon DSE:
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Fig. 4. The upper panel shows the two solutions for the ghost
exponent g for values of ζ allowed by condition (20) and inte-
gral convergence, see (92) and [33]. This excludes the second
branch in d = 2. The dashed line is for d = 2, the solid line
for d = 3 and the dashed-dotted line for d = 4. The lower
panel displays the two solutions for the ghost exponent g as a
function of d for ζ = 1

(g, t) =
(

1
2
,−3

2

)
(35)

while the other one depends on the parameter ζ. In the
special case of a transverse projection, ζ = 1, one has

(g, t) = (0.3976,−1.2952) (36)

thus reproducing the results of [33] where only the case
ζ = 1 has been treated.

Condition (20), the inequality (26) as well as conver-
gence of the integrals in the infrared restrict g in three
dimensions to

1
4

< g ≤ 3
4
. (37)

Requiring furthermore a well-defined Fourier transform of
the ghost propagator (at least in the sense of a distribu-
tion) leads to the condition g ≤ 1/2. This restricts the
range of allowed ζ-values for the varying branch to

1/4 ≤ ζ < 3. (38)

At the lower boundary both solutions merge into one.
Since in (27) and (28) the prefactors Ag and Az only

appear in the product A2
gAz only this combination is de-

termined by the infrared analysis:

1
AzA2

g

=
CAg2

3

(4π)
3
2

× 24(g−1)(2 + 2g(ζ − 1) − ζ)Γ (2 − 2g) sin2(πg)
cos(2πg)(g − 1)g2Γ

( 3
2 − 2g

) . (39)

Determining these prefactors turns out to be an essen-
tial and unexpectedly complicated part of the numerical
method. Thus (39) is used to check whether a correct nu-
merical solution is found [36].

5 Numerical results

The numerical solution of the DSEs (17), (18) and (19)
will be achieved in three steps. First, we study the ghost-
loop-only truncation where only diagrams with at least
one ghost propagator are kept. Second, we include the
gluon loop in the gluon equation. This truncation scheme
neglects all Higgs contributions and thus corresponds to
a purely three-dimensional Yang–Mills theory. The last
step is then to fully implement the complete system. A
description of the numerical method is given in [35,36].

5.1 Ghost-loop-only truncation

Keeping only ghost loops and using a bare ghost–gluon
vertex, the system of DSEs is completely specified. The
results of the corresponding calculation with ζ = 3, for
both the ghost and the gluon dressing functions, are shown
in Fig. 5. In this case, only the g = 1/2 infrared solution
exists. The gluon propagator exhibits a maximum located
at k/g2

3 ≈ 0.25.
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Fig. 5. The solutions of the DSEs in the ghost-loop-only trun-
cation scheme at ζ = 3. The dashed line refers to the dressing
functions of the gluon Z and the solid line to that of the ghost
G. All quantities have been made dimensionless by dividing
out appropriate powers of g2

3

The coupling constant is the only dimensionful quan-
tity entering the DSEs. Thus all results can be represented
through dimensionless variables when expressed in appro-
priate powers of g2

3 . Due to this fact, one can infer from
Fig. 5 the results of the ghost-loop-only truncation for any
positive value of the coupling constant. Even for a very
small coupling constants strong non-perturbative effects
for momenta smaller than g2

3 are clearly visible. Therefore,
the infrared behavior of the pertinent 2-point functions is
never perturbative.

For ζ �= 3, a spurious divergence appears in the ghost
loop of the gluon DSE. To cancel it, an appropriately ad-
justed tadpole term TGG is included. A subtlety required
here comes from the fact that the subtraction due to the
tadpole is only effective in the ultraviolet and not in the
infrared. A detailed account of this subtraction is given
in [35] and the tadpole term TGG is given in Appendix D.
The solutions for the transverse projection (ζ = 1) are
displayed in Fig. 6. In this case, solutions for both sets of
infrared exponents exist. As in the case ζ = 3, the solu-
tions show no special features.

To estimate the amount of gauge symmetry violation,
the DSEs have been solved for different values of ζ; see
Fig. 7. To this end we have varied ζ between 0 and 4 for
the set of half-integer infrared exponents. For the other
branch, due to numerical uncertainties, ζ has only been
varied from 0.25 to 2.55, the later corresponding to g =
0.2708 and t = −1.042. Within the explored ranges the
dependence of the solutions on ζ, i.e. on the projection of
the gluon DSE, is reasonably weak.

5.2 Yang–Mills theory

The gluon loop with a bare 3-gluon vertex in the gluon
DSE contributes with opposite sign as the ghost loop. This
is correct in the ultraviolet and irrelevant in the infrared
where it is subleading. At momenta of the order of g2

3 the
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Fig. 6. The ghost and gluon dressing function at ζ = 1. The
upper panel shows the ghost dressing function, the lower panel
shows the gluon dressing function. The solid line denotes the
solution for g = 1/2 and the dashed line gives the other solution
branch with g ≈ 0.4

gluon loop calculated with a bare 3-gluon vertex becomes
dominant. This leads to zeros on the RHS of the gluon
DSE and thus to a violation of the Gribov condition (20).
Therefore, within this truncation scheme, the tree-level 3-
gluon vertex is not acceptable. Reasons might be that at
momenta around g2

3

(i) the bare 3-gluon vertex overestimates the true ver-
tex,

(ii) the bare ghost–gluon vertex underestimates the true
one and/or

(iii) the two-loop graphs are important.
These possibilities will be explored in more detail in future
work [25]. However, as for the present study the specific
reason for this shortcoming is of minor importance, we
proceed by constructing an improved 3-gluon vertex. In
this we are guided by earlier studies in four dimensions
[7,8] where minimal modifications have been introduced
to obtain the correct ultraviolet behavior. To respect the
Bose symmetry of the 3-gluon vertex we model it by mul-
tiplying the bare 3-gluon vertex with an appropriate prod-
uct of functions. This leads to the ansatz6

6 Different ansätze, also ones violating Bose symmetry, have
been employed, and it has been found that they do not lead to
qualitative differences in the dressing function [35].
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Fig. 7. The ghost and gluon dressing function in ghost-loop-
only approximation for different values of ζ. The upper panel
shows the ghost dressing function, the lower panel the gluon
dressing function. The solid lines represent the solutions with
a ghost infrared exponent, g = 1/2, and the dashed lines the
ones for the other set of infrared exponents. At the peak in
the gluon, the middle lines correspond to solutions at ζ = 1.
The upper and lower line at mid-momenta give the solutions
at ζ = 0 and 4 for the g = 1/2-branch and at ζ = 0.25 and
2.55 for the other branch

ΓA3

βσµ(−q, q + k,−k) →
Γ tl;A3

βσµ (−q, q + k,−k)
(
A(q2)A((q + k)2)A(k2)

)−δ
,

A(q2) = Z(q2)(G(q2))2+1/2g. (40)

The function A is chosen to be a constant in the infrared.
The additional parameter δ does not change this behav-
ior. On the other hand, it allows to smoothly interpolate
between a large suppression and the tree-level value by
tuning it from large positive values to zero. Stable solu-
tions have been found for δ ≥ 0.114. In the following, we
employ mostly δ = 1/4 which yields a mild suppression
of the 3-gluon vertex without effecting the stability of the
numerical calculation.

The resulting dressing functions, using ζ = 3, are
shown in comparison to the ghost-loop-only result in
Fig. 8. For ζ �= 3 tadpole terms have again to be sub-
tracted. Their construction is detailed in [35] and the cor-
responding expressions are given in Appendix D. The re-
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Fig. 8. Solution of the Yang–Mills sector at ζ = 3. The dashed
curve gives the ghost-loop-only solution for comparison. The
solid curve gives the full Yang–Mills solution at δ = 1/4. Note
the linear scale for Z in the lower panel

sults for ζ = 1 and δ = 1/4 are shown in Fig. 9. The
dependence on ζ which provides a measure of gauge in-
variance violation, can be inferred from Fig. 10 and the
one on δ from Fig. 11. The only qualitative difference in
these functions, when compared to the ones of the ghost-
loop-only truncation, is a maximum in the gluon dressing
function which is now present for all employed values of ζ.
The location and height of this maximum depends on the
vertex construction. For most values of δ this dependence
is weak, however. Nevertheless, we have to conclude that
the behavior of the dressing functions is sensitive to the
structure of the 3-gluon vertex and additional information
about this vertex function is highly desirable and will be
studied in the future. In the context of this paper we will
rely on the comparison to lattice data (see Sect. 5.4) to
justify our ansatz.

Being confident that these technical issues do not in-
validate our results we note that the infrared behavior
of the gluon and ghost propagators in three-dimensional
Yang–Mills theory is very similar to the ones within four-
dimensional Yang–Mills theory. Differences are of a minor,
quantitative nature. This is not surprising since the three-
dimensional Yang–Mills theory is expected to be also a
strongly interacting, confining theory [32].
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Fig. 9. Solution of the Yang–Mills sector at ζ = 1. The upper
panel shows the ghost dressing function and the lower panel the
gluon dressing function. The solid curve denotes the g = 1/2
solution while the dashed curve displays the g ≈ 0.4 solution.
Both are at δ = 1/4

5.3 Including the Higgs

Finally, we add the Higgs, i.e. we implement the full sys-
tem of equations (17), (18) and (19). Although the Higgs
loop in the gluon DSE provides a positive contribution it
is not sufficient to allow for solutions with a bare 3-gluon
vertex. Thus, the ansatz (40) will also be used for the
full system. On the other hand, the tree-level gluon–Higgs
vertex will be employed in this section. (In Sect. 6.2 also
a modified gluon–Higgs vertex will be studied.)

As stated already, a tree-level Higgs mass is induced
when integrating out the higher Matsubara modes in the
process of dimensional reduction [22]. For the current anal-
ysis, the origin and the exact value of the Higgs mass are
not of direct importance. Hence this mass will be fixed
to a value extracted from lattice calculations and we use
mh/g2

3 = 0.8808 [23] in the following.
As can be inferred from Fig. 2 three additional tadpole

contributions arise when the Higgs is included; see also
Appendix A. Since the Higgs has a tree-level mass, two of
the tadpoles can already have a non-vanishing finite part
in leading-order perturbation theory, see Appendix C. The
self-energy of a Higgs field in a three-dimensional theory
would be in general linearly divergent. This is not the case
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Fig. 10. The ghost and gluon dressing of the pure Yang–Mills
theory for different values of ζ. The upper panel shows the
ghost dressing function, and the lower panel the gluon dressing
function. The solid line gives the solution for g = 1/2 and the
dashed line is for the other solution branch. At the peak in the
gluon dressing function, the middle lines represent the solution
at ζ = 1. The upper and lower lines at mid-momenta give the
solutions at ζ = 0 and ζ = 4 for the g = 1/2-branch and at
ζ = 1/4 and ζ = 2.45 for the other solution branch

here. The Higgs, being a component of the gluon field in
the four-dimensional theory, protects its self-energy from
being divergent at the expense of fixing at leading-order
perturbation theory the tree-level coupling h to be

h = −2g2
3

CA

CA + 2
; (41)

see Appendix C.
As can be seen from Fig. 12, the influence of the Higgs

on the Yang–Mills sector is small. This is in agreement
with results from lattice calculations [23]. The resulting
Higgs propagator, see Fig. 13, behaves similar to a massive
tree-level propagator.

Although the Higgs mass is fixed in the current set-
ting to be mh = 0.8808g2

3 , the Higgs mass dependence of
the gluon and ghost propagators, especially for decreasing
values of the Higgs mass,7 would be of interest. However,

7 As expected, for large values of the tree-level Higgs mass,
the solutions for the gluon and ghost propagators are indistin-
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Fig. 11. The ghost and gluon dressing functions of the pure
Yang–Mills theory for different values of δ. The upper panel
shows the ghost dressing function, and the lower panel the
gluon dressing function. The solid line gives the solution for
g = 1/2 and the dashed line is the other solution branch. At the
peak in the gluon dressing function, the middle lines represent
the solution at δ = 1/4. The upper and lower lines at mid-
momenta give the solutions at δ = 0.131 and δ = 1 for the
g = 1/2-branch and at δ = 0.114 and δ = 1 for the other
solution branch

already after a slight decrease in the Higgs mass, the so-
lution ceases to exist. For masses below mh ≈ 0.6g2

3 no
solution is found (at least, for δ ≤ 1).

The dependence of the Higgs on ζ is very small, devia-
tions between solutions for different values of ζ not exceed-
ing more than a few percent. However, the Higgs dressing
function, at momenta k ≈ g2

3 , is sensitive to the param-
eter δ; see Fig. 14. Similar to what happens in the gluon
dressing function, also the maximum of the Higgs dressing
function increases with decreasing δ. This is understand-
able from the fact that the Higgs self-energy depends on
the strength of the gluon propagator.

Although the analysis reveals some dependence on the
parameters ζ and δ at intermediate momenta, it is im-
portant to note that infrared properties are only weakly
dependent on these superficial quantities. Only one of the
two exponents depends mildly on ζ as already discussed.

guishable from the corresponding solutions of the pure Yang–
Mills theory.
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Fig. 12. The solution of the Yang–Mills system compared to
the full system at ζ = 1. The solid line denotes the full so-
lution at g = 1/2 while the dotted line is the corresponding
Yang–Mills solution. The dashed line gives the full solution
for the g ≈ 0.4 solution while the dashed-dotted line is the
corresponding Yang–Mills solution

In Fig. 15 we display the infrared coefficient Ag as a func-
tion of ζ or δ. (Note that Ah is fixed by the renormalized
mass and Az depends uniquely on Ag.) Besides some de-
pendence on δ for small values of this parameter (where
the solutions cease to exist, as well) the infrared coeffi-
cients are rather robust up to the edges of numerical sta-
bility.

5.4 Comparison to lattice results

Recently lattice results for the gluon and the Higgs prop-
agator [23] have become available. As the gluon propaga-
tor shows almost no sensitivity to the Higgs, not only in
our but also in these lattice calculations, we additionally
compare to the gluon propagator computed within three-
dimensional lattice Yang–Mills theory [37].

As can be inferred from Fig. 16, our results for the
gluon propagator agree astonishingly well with the corre-
sponding lattice results. As for the infrared behavior, the
lattice results are in favor of the g ≈ 0.4 solution. Note
that, at momenta k ≈ g2

3 , our truncation scheme is not
trustworthy and the better agreement of the g = 1/2 solu-
tion with the lattice gluon dressing function is not conclu-
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Fig. 13. The Higgs dressing function and propagator at ζ = 1.
The solid line gives the solution for g = 1/2, the dashed line
for g ≈ 0.4, the dashed-dotted line denotes the leading-order
perturbative result and the dotted line the tree-level behavior

sive. As displayed in Fig. 17 the DSE results for the Higgs
propagator show clear deviations from the corresponding
lattice results, the latter being closer to the leading-order
perturbative results than to the DSE results. We will re-
turn to a discussion of this point in Sect. 6.3.
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Fig. 14. The Higgs propagator as a function of δ at ζ = 1.
The solid line denotes the solution for g = 1/2 and the dashed
line for g ≈ 0.4. The higher the peak the smaller δ. The lowest
peak corresponds to δ = 1, the middle one to δ = 1/4 and the
largest one to δ = 0.0862 and δ = 0.061, respectively
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Fig. 15. The dependence of the infrared coefficient Ag on ζ in
the upper panel and on δ in the lower panel. Solid lines repre-
sent the g = 1/2 solution and dashed lines the other solution
branch

6 Towards observables

In a first step towards a calculation of observables from
the propagators we determine an approximative form of
the thermodynamic potential. Furthermore, we investigate
screening masses via the calculation of the Schwinger func-
tions from the propagators. In the following, the results
for ζ = 1, δ = 1/4 and CA = Nc = 3 will always be used.

6.1 Thermodynamic potential

Knowledge of all Green’s functions as functions of the tem-
perature would allow one to calculate the thermodynamic
potential and therefore all thermodynamic quantities.
Since not all of these are known, it is not possible to calcu-
late an exact thermodynamic potential. Knowledge of the
propagators is however sufficient to compute an approx-
imation to the thermodynamic potential, the Luttinger–
Ward or Cornwall–Jackiw–Tomboulis (LW/CJT) effective
action [38].

This effective action can be extended to abelian and
non-abelian gauge theories; see e.g. [39,40]. Its calculation
is, however, prohibitively complicated when using con-
structed instead of bare or exact vertices. Therefore we
will only extract here some qualitative features using the
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Fig. 16. The gluon propagator and dressing function in pure
Yang–Mills theory from the lattice and from Sect. 5.2. The
continuum-extrapolated values are from [23], the others from
[37]. The errors indicated are statistical. The solid line denotes
the g = 1/2 solution and the dashed line the g ≈ 0.4 solution.
Both are at ζ = 1 and δ = 1/4

simplest approximation to the thermodynamic potential.
It only depends on the propagators, and one has

Ω =
1
2
d(G)T

∑∫
d3p

(2π)3
(− ln(Z(q)) + (Z(q) − 1)

+ ln(G(q)) − (G(q) − 1)

− 1
2

ln
(

H(q)
H0(q)

)
+

1
2

(
H(q)
H0(q)

− 1
))

, (42)

2

3k/g
0 1 2 3 4 5 6 7

2
H

(k
)/

k
4 3

g

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Higgs propagator function

2

3k/g
0 1 2 3 4 5 6 7

H
(k

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Higgs dressing function

2

3k/g1

H
(k

)

-110

1

Higgs dressing function

Fig. 17. The Higgs propagator and dressing function in the
full theory from the lattice and from Sect. 5.3. The lattice data
are from [23]. The errors indicated are statistical. The solid
lines give the g = 1/2 solution and the dashed lines the g ≈
0.4 solution, both at ζ = 1 and δ = 1/4. The dotted lines
represent the tree-level result while the dashed-dotted lines
give the leading-order perturbative results

where d(G) = δaa is the dimension of the gauge group. H0
is the tree-level Higgs dressing function

H0(q) =
q2

q2 + m2
h

. (43)

Working in the infinite-temperature limit we are eventu-
ally interested in the energy density divided by T 4. This
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motivates a rescaling of the integration momenta, and one
obtains

Ω

T 4 =
g6
3

T 3 a, (44)

where the dimensionless constant a depends only on the
dimensionless ratio mh/g2

3 and thus becomes independent
of temperature in the limit T → ∞. In the simplest case,
g2
3 ∼ g2

4(µ)T with the four-dimensional coupling constant
g4 depending on the renormalization scale µ. Herein enters
the way in which the limit T → ∞ is performed. When
keeping g3(µ) fixed by appropriately choosing µ(T ), one
has g2

3 ∼ ΛQCD. Hence (44) scales as 1/T 3 and does not
contribute to the thermodynamic pressure significantly
compared to the hard modes. The Stefan–Boltzman be-
havior must then be obtained from the hard modes alone,
requiring

Ω

T 4 = g6
4(µ)

(
a +

b

g6
4(µ)

)
=

g6
3

T 3 a + b, (45)

where b stems from the hard modes [35]. However, the soft
modes may still contribute significantly to thermodynamic
properties, especially the trace anomaly, near the phase
transition [41].

The calculation of (42) turns out to be plagued by
spurious divergences, since the DSEs with the modified
3-gluon vertex are no longer exact stationary solutions of
(42). After carefully subtracting these [35], a turns out
to be within errors of O(1), but significantly depending
on the truncation and large numerical uncertainties. The
best value for the full solution is 3.6 for the g = 1/2 solu-
tion and 3.5 for the g ≈ 0.4 solution, contributed mostly
from the Higgs sector. The difference of two phases can
be extracted with better accuracy, as the leading spurious
divergence cancels. The result is

ag=1/2 − ag≈0.4 = 0.053 . (46)

Thus the g ≈ 0.4 solution is thermodynamically preferred,
in agreement with the lattice results in Sect. 5.4.

6.2 Schwinger functions

Screening masses are most directly extracted from the an-
alytic structure of the propagators. To obtain access to
these analytic properties we calculate the Schwinger func-
tion related to the propagator D, defined as [10]

∆(t) =
1
π

∫ ∞

0
dp0 cos(tp0)D(p0), (47)

i.e. the Fourier transform of the propagator with respect to
(Euclidean) time. Note that this definition is independent
of the dimensionality of the underlying theory. Negative
values for the Schwinger function can be traced to viola-
tions of positivity and therefore to absence of the particle,
represented by D, from the physical spectrum [10].

Using a sufficiently sophisticated FFT-algorithm to-
gether with at least 512 or more frequencies8, it is pos-

8 Better are several ten thousands to a million. The results
presented here have been obtained using roughly 5 · 105 fre-
quencies.
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Fig. 18. The Schwinger function of the gluon. The solid line
gives the numerical result for g = 1/2 while the dashed line
is for g ≈ 0.4. The dotted and dash-dotted line denote their
respective fits using the ansatz (48)

sible to calculate the Schwinger functions. The result for
the gluon, presented in Fig. 18, clearly exhibits positiv-
ity violations. This is in accordance with the Oehme–
Zimmermann super-convergence relation (1) and thus has
been expected. Furthermore, the position of the zeros can
be interpreted as the confinement scale. For the g = 1/2
solution, the zero occurs at g2

3t ≈ 3.29 and at g2
3t ≈ 3.98

for the other branch. This result is in agreement with re-
cent lattice results [42].

To be able to perform an analytic continuation of the
gluon propagator into the complex q2-plane we first fit
the Schwinger function. This is performed by using the
ansatz9

Zf (q) =
Azq

4g+1

1 + f + Azq4g+1

(
1 +

f

1 + fauq

)
=

Azq
4g+1(1 + f + aufq)

(1 + aufq)(1 + f + Azq4g+1)
(48)

for the dressing function. Az is the infrared coefficient de-
termined previously, and au is the ultraviolet coefficient
of leading-order resummed perturbation theory, as calcu-
lated in Appendix C. The fit parameters for both solu-
tions are given in Table 1. As demonstrated in Fig. 18 the
Schwinger function is fitted very well. The gluon propa-
gator and dressing function are also reasonably well de-
scribed by the fit; see Fig. 19.

Similar to a meromorphic fit ansatz used in [10] we will
describe the Higgs propagator and its Schwinger function,

Table 1. The coefficients for the gluon fit (48)

Solution Azg−2t
3 aug2

3 f

g = 1/2 20.3 64/27 1.32511
g ≈ 0.4 13.4 64/27 1.03148

9 In [10] a parameterization with only a branch cut and no
isolated pole provided a successful fit. Due to the different
asymptotic behavior in four and three dimensions we use a
different ansatz here.
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Fig. 19. Comparison of the fit-function (48) to the full so-
lutions of the dressing function. The solid line indicates the
g = 1/2 solution and dotted line its fit. The dashed line repre-
sents the g ≈ 0.4 solution and the dashed-dotted line its fit

the latter being analytically calculated from the former,
as follows:

Hf (q) =
e + fq2

q4 + 2m2 cos(2φ)q2 + m4 , (49)

∆f (t) =
e

2m3 sin(2φ)
e−tm cos(φ)

×
(

sin(φ + tm sin(φ)) +
fm2

e
sin(φ − tm sin(φ))

)
.

As demonstrated in Figs. 20 and 21 these fits already de-
scribe the Schwinger function quite well, but miss around
20% of the propagator at zero momentum. This indicates
that further massive modes are present. Indeed, for the
g = 1/2 solution, a further term of the form (49) has to
be added. For the g ≈ 0.4 solution, adding a term with
one pole,

Hf (q) =
e

q2 + m2 ,

∆f (t) =
e

2m
e−mt , (50)

allows one to improve the fit in this case, as well. Both
subleading fits are not very accurate for large t, and the
results have to be taken with care. They indicate, never-
theless, the existence of subleading contributions due to
the presence of further massive-particle-like contributions.
The fit parameters of both solutions can be found in Ta-
ble 2.

Table 2. The coefficients for the Higgs fit (49) and the sub-
leading one (49) and (50), respectively

Solution e fg4
3 φ m/g2

3

g = 1/2 4.0199 0.3545 −0.67078 1.4998
subleading 9.4493 0.6736 −0.18387 2.561
g ≈ 0.4 4.0697 0.37793 −0.63975 1.5045
subleading 0.81188 1.9223

t2
3

g
0 2 4 6 8 10 12 14 16 18 20

(t
)|

∆2 3
|g

-1010

-910

-810

-710

-610

-510

-410

-310

-210

-110

Higgs Schwinger function

2

3q/g
-2

10
-1

10 1 10
2

10

2
H

(q
)/

q
4 3

g

0

0.2

0.4

0.6

0.8

1

Higgs propagator

t2
3

g
0 2 4 6 8 10 12 14 16 18 20

(t
)|

sl∆2 3
|g

-1010

-910

-810

-7
10

-610

-510

-410

-310

-210

-110

Higgs subleading Schwinger function

Fig. 20. The Higgs propagator in the top panel and its
Schwinger function in the middle panel compared to their fits
for g = 1/2. The solid lines represent the numerical solution,
the dashed lines give the leading contribution and the dashed-
dotted lines the first subleading contribution. The dotted lines
underneath the solid lines give the sum of the leading and
subleading contribution. The bottom panel shows the compar-
ison of the numerical (solid) and the fitted (dashed) subleading
Higgs contribution; see text

As can be seen from Fig. 17 the result for the Higgs
propagator deviates significantly from the lattice results,
the self-energy being significantly overestimated. While
the gluon Schwinger function is reasonably independent
of the truncation, this turns out not to be the case for the
Higgs Schwinger function. In order to show this we study
the solution for a bare Higgs–gluon vertex suppressed via a
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Fig. 21. The Higgs propagator in the top panel and its
Schwinger function in the middle panel compared to their fits
for g ≈ 0.4. The solid lines represent the numerical solution,
the dashed lines give the leading contribution and the dashed-
dotted lines the first subleading contribution. The dotted lines
underneath the solid lines give the sum of the leading and
subleading contribution. The bottom panel shows the compar-
ison of the numerical (solid) and the fitted (dashed) subleading
Higgs contribution; see text

scaling factor ω.10 First, we note that the gluon Schwinger
function, in contrast to the Higgs one, is not susceptible
to such a change.

10 In the Landau gauge, due to the transversality of the gluon,
this is equivalent to modifying the tensor structure of the ver-
tex.
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Fig. 22. The top panel shows the Higgs propagator of the g ≈
0.4 solution for various suppression factors ω of the Higgs-gluon
vertex. The bottom panel shows the corresponding Schwinger
functions. The lattice data are the same as in Fig. 17. The solid
line is for ω = 1/4, the dashed line for ω = 1/2, the dotted line
is for ω = 3/4 and the dashed-dotted line for ω = 1

Figure 22 displays corresponding results for different
values of ω. The position of the first zero tends to in-
crease for decreasing ω. At ω ≈ 1/4 any oscillation, at
least within the available numerical precision, seems to be
gone altogether. A fit to the Schwinger function using (50)
reveals again additional structure at very small t which
cannot be captured by such a simple fit. As the fit also
does miss some strength at zero momentum for the prop-
agator this again indicates the presence of further massive
contributions in the propagator.

6.3 Analytic properties

Although the high-temperature limit of the four-dimen-
sional Minkowski theory is a genuinely Euclidean theory,
it will be of interest for other applications to extract the
analytic structure of the propagators investigated.

The gluon propagator exhibits similar behavior for
both solutions but there are also some significant differ-
ences. The denominator of the ansatz (48) contains two
factors, both of which could possibly give rise to a non-
trivial analytic structure. The first part stems from the fit
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of the perturbative tail necessary to generate the maxi-
mum in the gluon dressing function. Since all fit param-
eters are positive, this factor does not give rise to a pole
on the first Riemann sheet. However, it generates a pole
on the second Riemann sheet, which will occur at 1/auf ,
that is, at Euclidean momenta. This pole does not have a
physical interpretation, and may well be an artifact of the
fit, since (48) is tailored to generate the correct leading-
order perturbative behavior. Thus it generates most likely
a structure which has the Landau pole of perturbation
theory on the second Riemann sheet. We expect that this
pole vanishes when using a more sophisticated fit.

The second factor generates a genuine isolated pole at
(−(1 + f)/Az)−1/t. This expression has only one value on
the first Riemann sheet given by (−0.0933+0.1615i)g4

3 for
the g = 1/2 and (−0.1462 + 0.1248i)g4

3 for the other solu-
tion.11 In both cases a pole close to the origin is generated
with an imaginary part larger than the real part in one
case. For the first solution, the pole is found for an angle
significantly above π/4 while in the second case somewhat
below. In addition, the first solution generates two more
poles on two more Riemann sheets, while the second so-
lution, with a (most likely) irrational exponent, generates
an infinite number of further poles on an infinite number
of Riemann sheets. In both cases, the residue is complex.
In addition, there is a cut along the complete negative real
axis starting at zero. In this way it is similar to the results
in four dimensions [10].

From this analysis we infer that the gluon propagator
is positivity violating, and thus satisfies the requirements
of the Kugo–Ojima and Zwanziger–Gribov confinement
scenario.

On the other hand, the Higgs propagator very likely
does not have a branch cut but a number of simple poles
whose locations are given in Table 3. The sensitivity to the
Higgs–gluon vertex, however, necessitates further investi-
gations before a firmer conclusion can be drawn. We only
note here that for smaller values of the suppression factor
ω the Higgs propagator agrees better with lattice results,
and its poles are then close to or on the real axis.

7 Discussion

Equations (17), (18) and (19) describe the infinite-
temperature limit of Landau-gauge Yang–Mills theory.
The resulting gluon propagator exhibits the characteristic

Table 3. Location of the poles of the Higgs propagator for
ω = 1

Solution Order Pole/g4
3

g = 1/2 Leading −0.5112 ± 2.191i
g = 1/2 Subleading −6.11972 ± 2.35777i
g ≈ 0.4 Leading −0.650078 ± 2.16822i
g ≈ 0.4 Subleading −3.69539

11 This is of the order of ΛQCD when using the temperature-
scaling of Sect. 6.1.

behavior of a confined particle. The Yang–Mills subsec-
tor is satisfying both the Kugo–Ojima scenario (1) and
the Zwanziger–Gribov scenario (2), thus describing a con-
fined theory. These properties are very stable against the
assumptions made: the result of confined gluons is nearly
independent of the truncation and of the properties of the
Higgs. Hence, in accordance with corresponding lattice re-
sults, the presence of long-range chromomagnetic forces is
found.

The chromoelectric sector is simpler in that it is close
to a perturbative behavior. However, as the comparison
to lattice calculations shows, at least next-to-leading-order
perturbative effects or even genuinely non-perturbative ef-
fects play a role.

Combining these findings with the results from the
vacuum [7] and from the low-temperature calculations
[5] has impact on the understanding of the phase transi-
tion. The main difference between the low- and the high-
temperature phase is not primarily one between a strongly
interacting and confining system and one with only quasi-
free particles. The chromoelectric gluons, whose infrared
behavior change from over-screening to screening, come
somewhat close to such a picture. The chromomagnetic
gluons stay over-screened in the infrared and thus con-
fined. The order parameter for the phase transition is then
necessarily only a chromoelectric one. From the studies of
Wilson loops it is known that only the temporal (elec-
tric) Wilson lines show a behavior typical of deconfine-
ment while the spatial (magnetic) ones do not [43]. Note
that the order parameters used to study the deconfinement
transition on the lattice are typically chromoelectric ones
like the Polyakov lines [3]. Using the corresponding mag-
netic Polyakov lines we conjecture that almost no change
will be found. This point of view is also supported by re-
cent lattice calculations [44] which observe even at 6Tc an
over-screened magnetic and a screened electric propaga-
tor, albeit on rather small lattices.12

The results presented here may have also consequences
for the thermodynamic potential. In the analysis of the
Higgs propagator indications for further particle-like poles
have been found. These could contribute to the pressure.
The way in which over-screened gluons contribute to the
energy density but not to the pressure has been very re-
cently discussed in [41].

Another topic related to the investigations presented
here is the recently established connection between four-
dimensional Yang–Mills theory in Coulomb-gauge and
three-dimensional Yang–Mills theory in Landau gauge
[46]. The time-time component of the Coulomb-gauge
gluon propagator is on the one hand directly linked to
the static quark–quark potential and on the other hand to
the connected parts of expectation values of the Faddeev–
Popov operator. From this one concludes that the poten-
tial is approximately given by the ghost dressing function.
The infrared behavior of the Coulomb-gauge ghost prop-
agator in four dimensions and the Landau-gauge ghost

12 Based on arguments [45] that fermion propagators will van-
ish in the infinite-temperature limit we do not expect that
quarks can change anything in these considerations.
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propagator in three dimensions are determined from iden-
tical equations and one obtains identical infrared expo-
nents. While the solution g ≈ 0.4 generates a potential
which behaves as ∼ 1/k3.6 and is thus a little less than lin-
ear with distance, the second branch generates a solution
proportional to 1/k4 for small momenta, thus generating
the behavior expected for a linear confining potential.

8 Conclusions and outlook

We have analyzed the DSEs of three-dimensional Yang–
Mills theory with and without an additional massive ad-
joint Higgs field and solved them in a given truncation
scheme. The investigated theory can be regarded as the
high-temperature limit of a four-dimensional Yang–Mills
theory. Besides the propagators we considered the cor-
responding Schwinger functions. Although the resulting
Higgs function behaves nearly perturbative it does not
have a simple structure and experiences higher-order or
even non-perturbative effects. The chromomagnetic glu-
ons are over-screened. The Faddeev–Popov ghost propa-
gator is infrared enhanced similar to the four-dimensional
one. The corresponding long-range correlations thus im-
ply confinement of chromomagnetic modes as they imply
confinement of transverse gluons in four dimensions.

We have given an approximate expression for the ther-
modynamic potential. At the current stage it allows one
to discriminate which of the two sets of solutions is the
preferred one. Of course, it is our goal to extend our for-
malism such that physical observables such as the energy
density, pressure and entropy can be calculated reliably.

The next steps, however, also in connection with the
results found in [5], will be to include the higher Matsub-
ara frequencies to introduce the effects of a finite temper-
ature into the system. This will hopefully allow us to de-
termine the critical temperature and other aspects of the
phase transition. Including quarks will allow to address
the chiral phase transition. An extension to finite quark
chemical potential is feasible [18,47], and thus investiga-
tions of the QCD phase diagram based on a calculation
of the infrared behavior of QCD Green’s functions will
become possible as well.
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A Derivation of
the Dyson–Schwinger equations

The Dyson–Schwinger equations are the equations of mo-
tions for a quantum field theory. They can be derived [16–

18] for the Euclidean version from((
− δS

δφa(x)

∣∣∣∣
φ= δ

δja(x)

+ ja(x)

)
Z[ja(x)]

)
j=0

= 0, (51)

where φ is the field variable, j the corresponding source
term and a a generic multi-index. S is the Euclidean action
and Z is the generating functional,

Z =
∫

Dφae−S[φa]+
∫

dxφa(x)ja(x), (52)

that can be written as Z = exp(W ), W being a function of
the external sources. The effective action, i.e. the Legendre
transform of W , is defined by

W (ja) = −Γ (φa) +
∫

ddxja(x)φa(x), (53)

which implies

φa =
δW

δja
, (54)

ja =
δΓ

δφa
. (55)

In the case of Grassmann fields, c, such as ghosts and
fermions, two independent sources are necessary. This
modifies the above to

Z =
∫

DcaDc̄ae−S[ca,c̄a]+
∫

ddx(η̄a(x)ca(x)+c̄a(x)ηa(x)),

(56)

ca(x) =
δW

δη̄a(x)
, c̄a(x) = − δW

δηa(x)
,

W (ηa, η̄a) = −Γ (ca, c̄a)

+
∫

ddx(η̄a(x)ca(x) + c̄a(x)ηa(x)), (57)

ηa(x) =
δΓ

δc̄a(x)
, η̄a(x) = − δΓ

δca(x)
,

where all derivatives with respect to Grassmann variables
act in the direction of ordinary derivatives.

The general procedure to obtain the corresponding
Dyson–Schwinger equations is to calculate the expression
(51) for a given action and then perform once more a func-
tional derivative with respect to the field or with respect
to the conjugate field in case of anti-commuting fields.
The additional source term then yields the propagator,
while the right-hand side of the equations are found by
the derivative of the action.

In general, propagators and their inverse are defined
as

δ2Γ

δφb(y)δφa(x)
= Dab(x − y)−1, (58)

δ2W

δφb(y)δφa(x)
= Dab(x − y), (59)
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while the full n-point vertices are defined by a n-fold
derivative of Γ . For the ghost–gluon vertex which is de-
fined as

δ3Γ

δca(x)δc̄b(y)δAc
µ(z)

= Γ cc̄A;abc
µ (x, y, z) , (60)

the sequence of derivatives is relevant (in contrast to the
gluon vertex functions).

Using the identities

δ2W

δje
µ(x)δη̄d(x)

= −
∫

ddzddw
δ2W

δjf
ν (z)δje

µ(x)

δ2Γ

δc̄g(w)δAf
ν (z)

× δ2W

δηg(w)δη̄d(x)
, (61)

∂x
µ

δ
δηc(x)

=
∫

ddz

(
∂x

µ

δΓ

δηc(x)δc̄e(z)

)
δ

δηe(z)
(62)

δ3W

δAb
ν(y)δjc

σ(x)δje
σ(x)

,

= −
∫

dzdw
δ2W

δjc
σ(x)δjf

ρ (z)

δ3Γ

δAb
ν(y)δAf

ρ(z)δAg
ω(w)

× δ2W

δjg
ω(w)δje

σ(x)
, (63)

it is straightforward (although tedious) to derive the DSEs
in position space. Performing a Fourier transformation
to momentum space, where all momenta are defined as
incoming and momentum conservation at the vertices is
taken into account, the DSEs in momentum space are de-
rived. To make the appearance of the tree-level vertices
explicit, it is necessary to add in general permuted ver-
sions of each diagram and using the (anti-)symmetry of
the vertices in their respective fields. The ghost propaga-
tor equation reads

Dab−1
G (p) = −δabp2

+
∫

ddq

(2π)d
Γ tl;cc̄A;dae

µ (−q, p, q − p)Def
µν(p − q)Ddg

G (q)

× Γ cc̄A;bgf
ν (−p, q, p − q) , (64)

the gluon one is given by

Dab−1
µν (p) = δab(δµνp2 − pµpν)

−
∫

ddq

(2π)d
Γ tl;cc̄A;dca

µ (−p − q, q, p)Dcf
G (q)Dde

G (p + q)

× Γ cc̄A;feb
ν (−q, p + q, −p)

+
1
2

∫
ddq

(2π)d

× Γ tl;A3;acd
µσχ (p, q − p, −q)Dcf

σω(q)Dde
χλ(p − q)

× ΓA3;bfe
νωλ (−p, q, p − q)

+
1
2

∫
ddq

(2π)d

× Γ tl;Aφ2;acd
µ (p, q − p, −q)Dde(q)Dcf (p − q)

× ΓAφ2;bef
ν (−p, q, p − q)

+
1
2

∫
ddq

(2π)d
Γ tl;A4;abcd

µνσρ (p, −p, q, −q)Dcd
σρ(q)

+
1
6

∫
ddqddk

(2π)2d
Γ tl;A4;acde

µσξχ (p, −q, −p + q − k, k)

× Ddh
χλ(p − q − k)Dcf

ξρ(q)Deg
σω(k)

× ΓA4;hbfg
λνρω (p − q − k,−p, q, k)

+
1
2

∫
ddqddk

(2π)2d

× Γ tl;A4;acde
µδγσ (p, −q, q − k − p, k)Ddh

γλ(k + p − q)

× Γ bfg
A3;νρω(−p, p + k,−k)

× Γhij
A3;λχξ(k + p − q, q, −k − p)

× Dfj
ρξ (p + k)Deg

σω(k)Dci
δχ(q)

+
1
2

∫
ddq

(2π)d
Γ tl;A2φ2;abdf

µν (p, −p, q, −q)Ddf (q)

− 1
2

∫
ddqddk

(2π)2d
Γ tl;A2φ2;aedf

µσ (p, q − p − k,−q, k)Dfi(k)

× Deg
σρ(p − q + k)Ddh(q)

× ΓA2φ2;gbhi
ρν (p − q + k,−p, q, −k)

+
∫

ddqddk

(2π)2d

× Γ tl;A2φ2;aedf
µσ (p, q−p−k,−q, k)Deg

µρ(p+k−q)

× Dfi(k)Dhk(k + p)Ddj(q)

× ΓAφ2;gjk
ρ (p + k − q, q, −k − p)

× ΓAφ2;bhi
ν (−p, k + p, −k) , (65)

and finally the one for the Higgs is

Dab(p)−1 = δab(p2 + m2
h)

+
∫

ddq

(2π)d
Γ tl;Aφ2;eac

ν (−p − q, p, q)Dcg
νµ(p + q)

× Dfc(q)Γ gbf
µ (p + q, −p, −q)

+
1
2

∫
ddq

(2π)d
Γ tl;A2φ2;cdab

µν (q, −q, p, −p)Dcd
µν(q)

− 1
2

∫
ddqddk

(2π)d
Γ tl;A2φ2;cdae

µσ (−p − q + k,−k, p, q)

× Dcg
µν(p + q − k)Did

ρσ(k)Deh(q)

× ΓA2φ2;igbh
ρν (−k, p + q − k,−p, q)

+
1
2

∫
ddqddk

(2π)2d
Γ tl;A2φ2;cdae

µσ (−q, k, p,−p + q − k)Dcg
µν(q)
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× Dej(p − q + k)

× Did
ρσ(k)ΓAφ2;gjk

ν (q, p − q + k,−p − k)

× Dkh(p + k)ΓAφ2;ibh
ρ (−k,−p, p + k)

+
1
2

∫
ddqddk

(2π)2d
Γ tl;A2φ2;cdae

µχ (−q, q+k, p,−p−k)Dcg
µν(q)

× Deh(p + k)Dkd
λχ(q + k)ΓA3;jgk

σνλ (k, q,−q − k)

× Dij
ρσ(k)ΓAφ2;ibh

ρ (−k,−p, p + k)

+
1
2

∫
ddq

(2π)d
Γ tl;φ4;abcd(p, −p, q, −q)Dcd(q)

− 1
6

∫
ddqddk

(2π)2d
Γ tl;φ4;agch(p, −p + q − k; k; −q)Dhe(q)

× Dgd(p − q + k)Dfc(k)

× Γφ4;debf (p − q + k, q,−p, −k)

+
1
3

∫
ddqddk

(2π)2d

× Γ tl;φ4;aicj(p, −p − k + q, k,−q)Did(p + k − q)

× Djg(q)Dfc(k)Γφ3;gdh(q, p + k − q, −k − p)

× Deh(p + k)Γφ3;ebf (p + k,−p, −k) . (66)

The tree-level vertices for the ghost–gluon, 3-gluon, 4-
gluon, 2-gluon–Higgs, 2-gluon–2-Higgs and 4-Higgs inter-
actions have been used. They are given by

Γ tl;cc̄A;abc
µ (p, q, k) = ig3f

abcqµ, (67)

Γ tl;A3;abc
µνρ (p, q, k)

= −ig3f
abc((q − k)µδνρ + (k − p)νδµρ

+ (p − q)ρδµν), (68)

Γ tl;A4;abcd
µνσρ (p, q, k, l)

= g2
3(feabfecd(δµσδνρ − δµρδνσ)

+ fgacfgbd(δµνδσρ − δµρδνσ)

+ fgadfgbc(δµνδσρ − δµσδνρ)), (69)

Γ tl;Aφ2;abc
µ (p, q, k) = ig3f

abc(q − k)µ, (70)

Γ tl;A2φ2;abcd
µν (p, q, k, l) = g2

3δµν(feacfebd + feadfebc), (71)

Γ tl;φ4;abcd(p, q, k, l) = 2h(δabδcd + δacδbd + δadδbc), (72)

where the momentum conserving δ-functions have been
suppressed. The complete graphical representation of (64),
(65), and (66) is shown in Fig. 23.

B Integral kernels

The integral kernels in (17), (18) and (19) are obtained by
using tree-level vertices and performing the corresponding
contractions. The ghost kernel is given by

At(k, q, θ) = − q2 sin3(θ)
(k2 + q2 − 2kq cos θ)2

. (73)

−1

=
−1

−

−1

=
−1

− + +

+ +

+ + + +

−1

=
−1

+ +

+ + +

+ + +

Fig. 23. The DSEs of the propagators of the Yang–Mills theory
with an adjoint Higgs given in (64), (65), and (66). The same
conventions apply as in Fig. 3

The contributions in the Higgs equation are

N1(k, q, θ) = − 2q2 sin3(θ)
(k2 + q2 + 2kq cos θ)2

(74)

N2(k, q, θ) = − 2 sin3(θ)
k2 + q2 + 2kq cos θ

. (75)

The kernels in the gluon equations are finally

R(k, q, θ) = − ((ζ − 1)kq cos(θ) − q2 + ζq2 cos2(θ)) sin θ

2k2(k2 + q2 + 2kq cos θ)
(76)

ML(k, q, θ)

=
((ζ − 1)(k2 + 4kq cos θ) − 4q2 + 4q2ζ cos2(θ))

4k2(k2 + q2 + 2kq cos θ)
× sin θ, (77)

MT(k, q, θ) =
sin θ

4k2(k2 + q2 + 2kq cos θ)
× ((k2 + 2q2)((ζ − 9)k2 − 4q2)

+ 8(ζ − 3)(k2 + q2)kq cos θ

+ (8ζq4 + (ζ + 7)k4 + 4(5ζ − 1)k2q2) cos2(θ)
+ 4(4ζq2 + (ζ + 3)k2) cos3(θ) + 4ζk2q2 cos4(θ)

)
.

(78)

The modified gluon vertex is introduced by multiplying
MT with (40).

C Perturbative expressions

Replacing all full quantities in the truncated DSEs (17),
(18) and (19) by their tree-level values, i.e. one for all
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dressing functions and the tree-level vertices (67)–(72) in-
stead of the full vertices, the standard perturbation theory
to one-loop order is obtained. It is then possible to calcu-
late the leading-order perturbative dressing functions. For
the ghost this becomes

G(k)−1 = 1 − g2
3CA

16k
(79)

to leading order, independent on the presence of a Higgs.
Note that a Landau pole at k = O(g2

3) is present.
The calculation of the gluon self-energy is a little more

tricky since, although finite in three dimensions due to a
Slavnov–Taylor identity, each single contribution is lin-
early divergent. Corresponding problems are most easily
circumvented when contracting the gluon equation with
the Brown–Pennington projector. Performing the calcula-
tion in pure Yang–Mills theory yields

Z(k)−1 = 1 − 11g2
3CA

64k
. (80)

Including the Higgs one obtains

Z(k)−1 = 1 − 11g2
3CA

64k

+
g2
3CA

16πk

(
2
mh

k
− k2 + 4m2

h

k2 csc−1

√
1 +

4m2
h

k2

)
. (81)

Since non-perturbative effects already arise at order 1/k2

in the present truncation scheme, the only interesting part
is for k � g2

3 , mh leading to

Z(k)−1 = 1 − 9g2
3CA

64k
. (82)

Finally the Higgs self-energy is

H(k)−1 = 1 +
m2

h

k2 +
g2
3CA

k

mh

4πk

+
g2
3CA

k

1
2πk

×
(

−mh +
(

m2
h + k2

k
− 2k

)
arcsin

(√
k2

m2
h + k2

))
,

(83)

where the third term is the tadpole contribution. The lead-
ing contribution is

H(k)−1 = 1 − g2
3CA

4k
. (84)

The coupling constant h is determined by requiring that
the sum of the tadpole kernels already generate a finite in-
tegral, i.e. independent of the regularization scheme. This
is obtained by requiring (41).

Note that, in three dimensions, resummation has only
effects from order g4

3 on since, by dimensional arguments
alone, only tree-level expressions in the loops can con-
tribute at order g2

3 . Therefore (79), (82) and (84) already

constitute the resummed solution. This is confirmed by
the numerical calculations presented in Sect. 5.

Note further that this also ensures that gauge symme-
try is intact to one-loop order in the regime of applicabil-
ity of leading-order resummed perturbation theory. The
violation of gauge symmetry in this approach is, at least,
not stronger than in ordinary leading-order perturbation
theory.

D Tadpoles

The tadpoles used for the ghost-loop-only system read

TGG = −g2
3CA

(2π)2

∫
dqdθ

× (RD(k, q)
(
G(q)G(k + q) − A2

gq
−2g(k + q)−2g

)
+ R3(k, q)

× (
G(q)G(k + q) − A2

gq
−2g(k + q)−2g − 1

))
. (85)

Here the kernel R has been split into its convergent, ζ-in-
dependent part R0, its finite ζ-dependent part R3 and its
divergent part RD as

R = R0 + R3 + RD. (86)

For the pure Yang–Mills theory this is altered to

TGG = −g2
3CA

(2π)2

∫
dqdθ

× (RD(k, q)(G(q)G(k + q) − A2
gq

−2g(k + q)−2g)

+ R3(k, q)
(
G(q)G(k + q) − A2

gq
−2g(k + q)−2g − 1

)
+ MTD(k, q)Z(q)Z(k + q)) , (87)

where MTD contains the divergent part of MT, including
the alterations due to the dressed 3-gluon vertex (40). For
the full theory the additional tadpole in the gluon equation
is given by

TGH = −g2CA

(2π)2

∫
dqdθ (MLD(k, q)H(q)H(k + q)) . (88)

In the Higgs equation, the tadpoles are set to

THG + THH =
g2
3CA

k2

m

4π
=:

δm2

k2 . (89)

A detailed account for the construction of the tadpoles is
given in [35].

E Infrared expressions

As already argued in Sect. 4.2, the only solution without
further assumption is that of ghost dominance. This then
requires the calculation of IGT and IGG in (27) and (28)
only. The latter can be obtained straightforwardly when
using the ansatz (25) and the general formula
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∫
ddq

(2π)d
xαzβ =

1

(4π)
d
2

× Γ
(−α − β − d

2

)
Γ
(

d
2 + α

)
Γ
(

d
2 + β

)
Γ (d + α + β)Γ (−α)Γ (−β)

y
d
2 +α+β (90)

valid for finite integrals, where x = q2, z = (q − k)2 and
y = k2. It yields

IGG = −g2
3CAπ
(4π)

d
2

× 24g−2d(d − 4g)(2 + d(ζ − 2) − 4g(ζ − 1) − ζ)

(d − 1)g2Γ
(

1+d−2g
2

)2
Γ (g)2

× Γ (d − 2g)Γ
(

2g − d

2

)
. (91)

Note that the integral is convergent if and only if

d − 1
2

≥ g >
d − 2

4
, (92)

where the equality on the upper boundary requires the
result to exist only in the sense of a distribution.

Performing the same calculation for the ghost self-
energy is more complicated. Since it is, in general, a diver-
gent quantity, (90) cannot be applied directly. It is nec-
essary to regularize and then renormalize the expression.
This can be done in a momentum subtraction scheme [33]
or via dimensional regularization. Here, the latter has been
performed by applying the standard rules of dimensional
regularization [48]. This then immediately gives a finite re-
sult. However, by doing so a divergent quantity has been
removed which is formally eliminated by setting −Z̃3 equal
to this quantity. This procedure yields the same result as
the momentum subtraction scheme. The range allowed for
g in (92) renders IGT not only to have a divergence of log-
arithmic or linear order in even or uneven dimensions, but
also quadratic or cubic divergences. Using a subtraction
scheme, it would be necessary to include the next term
in the Taylor expansion. On the other hand, dimensional
renormalization directly yields

IGT =
g2
3CA

(4π)
d
2

× 21−2g
(
4g(d − 3)d + 21+2g(1 + g − dg)

)
(2 − d + 2g)(d + 2g)Γ

(
d
2 − 2g

)
Γ (g)Γ

(
d
2 + g

)
× Γ

(
d

2
− g

)
Γ (−g)Γ (2g) (93)

Note that this expression becomes negative already for
values allowed by (92), e.g. for g ≥ 3/4 in three dimen-
sions, thus reducing the allowed range and leading to the
plots in Fig. 4.
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